Predicting IBM Churn with LDA and XGBoost

HR Churn Analysis

This is me fiddling around with an employee attrition dataset on my last few days at PNC.

Description

Uncover the factors that lead to employee attrition and explore important questions such as ‘show me a breakdown of distance from home by job role and attrition’ or ‘compare average monthly income by education and attrition’. This is a fictional data set created by IBM data scientists.

Education 1 ‘Below College’ 2 ‘College’ 3 ‘Bachelor’ 4 ‘Master’ 5 ‘Doctor’

EnvironmentSatisfaction 1 ‘Low’ 2 ‘Medium’ 3 ‘High’ 4 ‘Very High’

JobInvolvement 1 ‘Low’ 2 ‘Medium’ 3 ‘High’ 4 ‘Very High’

JobSatisfaction 1 ‘Low’ 2 ‘Medium’ 3 ‘High’ 4 ‘Very High’

PerformanceRating 1 ‘Low’ 2 ‘Good’ 3 ‘Excellent’ 4 ‘Outstanding’

RelationshipSatisfaction 1 ‘Low’ 2 ‘Medium’ 3 ‘High’ 4 ‘Very High’

WorkLifeBalance 1 ‘Bad’ 2 ‘Good’ 3 ‘Better’ 4 ‘Best’

Libraries

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import plotly.express as px
import seaborn as sns
import sklearn

from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = 'all'
%load_ext autoreload

Read in Data

df = pd.read_csv('ibm_attrition_file.csv').sort_values('Attrition')

df.head()
df.shape
df.dtypes

sns.displot(df, x='Attrition', shrink = .8)

Age Attrition BusinessTravel DailyRate Department DistanceFromHome Education EducationField EmployeeCount EmployeeNumber ... RelationshipSatisfaction StandardHours StockOptionLevel TotalWorkingYears TrainingTimesLastYear WorkLifeBalance YearsAtCompany YearsInCurrentRole YearsSinceLastPromotion YearsWithCurrManager
734 22 No Travel_Rarely 217 Research & Development 8 1 Life Sciences 1 1019 ... 1 80 1 4 3 2 4 3 1 1
949 39 No Travel_Rarely 524 Research & Development 18 2 Life Sciences 1 1322 ... 1 80 0 9 6 3 8 7 1 7
948 30 No Travel_Rarely 634 Research & Development 17 4 Medical 1 1321 ... 4 80 2 9 2 3 9 1 0 8
945 50 No Travel_Rarely 1322 Research & Development 28 3 Life Sciences 1 1317 ... 2 80 0 25 2 3 3 2 1 2
944 28 No Non-Travel 1476 Research & Development 1 3 Life Sciences 1 1315 ... 1 80 3 10 6 3 9 8 7 5

5 rows × 35 columns

(1470, 35)






Age                          int64
Attrition                   object
BusinessTravel              object
DailyRate                    int64
Department                  object
DistanceFromHome             int64
Education                    int64
EducationField              object
EmployeeCount                int64
EmployeeNumber               int64
EnvironmentSatisfaction      int64
Gender                      object
HourlyRate                   int64
JobInvolvement               int64
JobLevel                     int64
JobRole                     object
JobSatisfaction              int64
MaritalStatus               object
MonthlyIncome                int64
MonthlyRate                  int64
NumCompaniesWorked           int64
Over18                      object
OverTime                    object
PercentSalaryHike            int64
PerformanceRating            int64
RelationshipSatisfaction     int64
StandardHours                int64
StockOptionLevel             int64
TotalWorkingYears            int64
TrainingTimesLastYear        int64
WorkLifeBalance              int64
YearsAtCompany               int64
YearsInCurrentRole           int64
YearsSinceLastPromotion      int64
YearsWithCurrManager         int64
dtype: object






<seaborn.axisgrid.FacetGrid at 0x7ffca1cf6510>

png

EDA

I first look at some features that might be important in the dataset.

Attrition by Age

Attrition rates are higher among younger employees.

sns.displot(
    df.Age,
    kde = True
)
<seaborn.axisgrid.FacetGrid at 0x7ffc9e629ed0>

png

sns.displot(data=df, x="Age", hue="Attrition", multiple="stack")
<seaborn.axisgrid.FacetGrid at 0x7ffca2c9f410>

png

Job Satisfaction

Lower job satisfaction unsurprisingly yields a higher attrition rate although perhaps not as high as one might expect.

g = sns.displot(
    data = df,
    x = 'JobSatisfaction',
    hue = 'Attrition',
    multiple = 'stack',
    discrete=True,
    shrink = .8
    )

g.set_axis_labels("Job Satisfaction", "Count", labelpad=10)
g.set(title="Lower Job Satisfaction leads to Higher Attrition")
g.fig.set_size_inches(6.5, 4.5)
g.despine(trim=True)
<seaborn.axisgrid.FacetGrid at 0x7ffca3e423d0>






<seaborn.axisgrid.FacetGrid at 0x7ffca3e423d0>






<seaborn.axisgrid.FacetGrid at 0x7ffca3e423d0>

png

Gender and Marital Status

Single men and women are more likely to leave the company but age may be a confounder. Men are slightly more likely to leave than women.

df_new = df.copy()
df_new['Attr'] = df_new['Attrition'].apply(lambda x: 1 if x == 'Yes' else 0)
df_new['Count'] = 1
df_new_group = df_new.groupby(['Gender', 'MaritalStatus'])[['Attr', 'Count']].sum()
df_new_group['pct'] = df_new_group['Attr'] / df_new_group['Count']

df_heat = df_new_group.reset_index()[['Gender','MaritalStatus','pct']]\
    .pivot('MaritalStatus', 'Gender')

sns.heatmap(
    data=df_heat
)

<matplotlib.axes._subplots.AxesSubplot at 0x7ffca5c05c10>

png

Correlation Plots

df_num = df[df.columns[df.dtypes == 'int64']][['Age', 'DailyRate', 'DistanceFromHome',\
                                              'MonthlyIncome', 'PerformanceRating', 'JobSatisfaction', \
                                             'WorkLifeBalance']]


g = sns.PairGrid(df_num)
g.map_upper(sns.histplot)
g.map_lower(sns.kdeplot, fill=True)
g.map_diag(sns.histplot, kde=True)
<seaborn.axisgrid.PairGrid at 0x7ffca5c05cd0>






<seaborn.axisgrid.PairGrid at 0x7ffca5c05cd0>






<seaborn.axisgrid.PairGrid at 0x7ffca5c05cd0>

png

Many features are correlated although no features have a higher correlation than 0.3 or less than -0.1.

df_heat = df[df.columns[df.dtypes == 'int64']]\
    .drop(['EmployeeCount', 'EmployeeNumber', 'StandardHours'], axis=1)

corr = df_heat.corr()

# Set up the matplotlib figure
f, ax = plt.subplots(figsize=(11, 9))

# Generate a custom diverging colormap
cmap = sns.diverging_palette(230, 20, as_cmap=True)

# Draw the heatmap with the mask and correct aspect ratio
sns.heatmap(corr,  cmap=cmap, vmax=.3, center=0,
            square=True, linewidths=.5, cbar_kws={"shrink": .5})
<matplotlib.axes._subplots.AxesSubplot at 0x7ffca7201b10>

png

Predictive Analytics - LDA

Linear Discriminant Analysis (LDA) is a feature reduction method for data with discrete classes. It is like PCA except that it takes advantage of information about the classification in the training data. It projects data into fewer dimensions by maximizing both the mean distance between the median data point of each class and minimizing the “spread” within each class.

# Drop columns with no information
df.columns
df_clean = df.drop(['EmployeeCount', 'EmployeeNumber', 'StandardHours', 'Over18'], axis=1)
df_clean['Attrition'] = df_clean['Attrition'].apply(lambda x: 1 if x == 'Yes' else 0)
Index(['Age', 'Attrition', 'BusinessTravel', 'DailyRate', 'Department',
       'DistanceFromHome', 'Education', 'EducationField', 'EmployeeCount',
       'EmployeeNumber', 'EnvironmentSatisfaction', 'Gender', 'HourlyRate',
       'JobInvolvement', 'JobLevel', 'JobRole', 'JobSatisfaction',
       'MaritalStatus', 'MonthlyIncome', 'MonthlyRate', 'NumCompaniesWorked',
       'Over18', 'OverTime', 'PercentSalaryHike', 'PerformanceRating',
       'RelationshipSatisfaction', 'StandardHours', 'StockOptionLevel',
       'TotalWorkingYears', 'TrainingTimesLastYear', 'WorkLifeBalance',
       'YearsAtCompany', 'YearsInCurrentRole', 'YearsSinceLastPromotion',
       'YearsWithCurrManager'],
      dtype='object')

Encode Features

df_objs = df_clean.columns[df_clean.dtypes == 'object']

df_clean[df_objs]
df_enc = pd.get_dummies(df_clean, prefix = df_objs)
df_enc['Attrition'] = df_clean['Attrition'].apply(lambda x: 'Yes' if x == 1 else 'No')
df_enc.head()

BusinessTravel Department EducationField Gender JobRole MaritalStatus OverTime
734 Travel_Rarely Research & Development Life Sciences Male Laboratory Technician Married No
949 Travel_Rarely Research & Development Life Sciences Male Manufacturing Director Single No
948 Travel_Rarely Research & Development Medical Female Manager Married Yes
945 Travel_Rarely Research & Development Life Sciences Female Research Director Married Yes
944 Non-Travel Research & Development Life Sciences Female Laboratory Technician Married No
... ... ... ... ... ... ... ...
370 Travel_Rarely Sales Life Sciences Female Sales Representative Single No
1036 Travel_Frequently Research & Development Life Sciences Male Laboratory Technician Married Yes
1033 Travel_Frequently Research & Development Life Sciences Female Manufacturing Director Single No
1057 Travel_Frequently Sales Technical Degree Female Sales Executive Single No
0 Travel_Rarely Sales Life Sciences Female Sales Executive Single Yes

1470 rows × 7 columns

Age Attrition DailyRate DistanceFromHome Education EnvironmentSatisfaction HourlyRate JobInvolvement JobLevel JobSatisfaction ... JobRole_Manufacturing Director JobRole_Research Director JobRole_Research Scientist JobRole_Sales Executive JobRole_Sales Representative MaritalStatus_Divorced MaritalStatus_Married MaritalStatus_Single OverTime_No OverTime_Yes
734 22 No 217 8 1 2 94 1 1 1 ... 0 0 0 0 0 0 1 0 1 0
949 39 No 524 18 2 1 32 3 2 3 ... 1 0 0 0 0 0 0 1 1 0
948 30 No 634 17 4 2 95 3 3 1 ... 0 0 0 0 0 0 1 0 0 1
945 50 No 1322 28 3 4 43 3 4 1 ... 0 1 0 0 0 0 1 0 0 1
944 28 No 1476 1 3 3 55 1 2 4 ... 0 0 0 0 0 0 1 0 1 0

5 rows × 52 columns

Split and Normalize Data

import sklearn.preprocessing as sp
import sklearn.model_selection as skms
train, test = skms.train_test_split(df_enc, random_state=42)
trainY, testY = train.Attrition, test.Attrition
trainX, testX = train.drop(['Attrition'], axis=1), test.drop(['Attrition'], axis=1)

df_objs = df_clean.columns[df_clean.dtypes == 'object']

df_clean[df_objs]
df_enc = pd.get_dummies(df_clean, prefix = df_objs)
df_enc.head()

scaler = sp.StandardScaler().fit(trainX)
scale_train = scaler.transform(trainX)
scale_test = scaler.transform(testX)

BusinessTravel Department EducationField Gender JobRole MaritalStatus OverTime
734 Travel_Rarely Research & Development Life Sciences Male Laboratory Technician Married No
949 Travel_Rarely Research & Development Life Sciences Male Manufacturing Director Single No
948 Travel_Rarely Research & Development Medical Female Manager Married Yes
945 Travel_Rarely Research & Development Life Sciences Female Research Director Married Yes
944 Non-Travel Research & Development Life Sciences Female Laboratory Technician Married No
... ... ... ... ... ... ... ...
370 Travel_Rarely Sales Life Sciences Female Sales Representative Single No
1036 Travel_Frequently Research & Development Life Sciences Male Laboratory Technician Married Yes
1033 Travel_Frequently Research & Development Life Sciences Female Manufacturing Director Single No
1057 Travel_Frequently Sales Technical Degree Female Sales Executive Single No
0 Travel_Rarely Sales Life Sciences Female Sales Executive Single Yes

1470 rows × 7 columns

Age Attrition DailyRate DistanceFromHome Education EnvironmentSatisfaction HourlyRate JobInvolvement JobLevel JobSatisfaction ... JobRole_Manufacturing Director JobRole_Research Director JobRole_Research Scientist JobRole_Sales Executive JobRole_Sales Representative MaritalStatus_Divorced MaritalStatus_Married MaritalStatus_Single OverTime_No OverTime_Yes
734 22 0 217 8 1 2 94 1 1 1 ... 0 0 0 0 0 0 1 0 1 0
949 39 0 524 18 2 1 32 3 2 3 ... 1 0 0 0 0 0 0 1 1 0
948 30 0 634 17 4 2 95 3 3 1 ... 0 0 0 0 0 0 1 0 0 1
945 50 0 1322 28 3 4 43 3 4 1 ... 0 1 0 0 0 0 1 0 0 1
944 28 0 1476 1 3 3 55 1 2 4 ... 0 0 0 0 0 0 1 0 1 0

5 rows × 52 columns

Cross Validation Training

import sklearn.discriminant_analysis as sda
import sklearn.metrics as sm

from sklearn.model_selection import cross_val_score
from sklearn.model_selection import RepeatedStratifiedKFold

model = sda.LinearDiscriminantAnalysis()

# model.fit(scale_train, trainY)
# define model evaluation method
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=42)
# evaluate model
scores = cross_val_score(model, scale_train, trainY, scoring='accuracy', cv=cv, n_jobs=2)
# summarize result
scores

print('Mean Accuracy: %.3f (%.3f)' % (np.mean(scores), np.std(scores)))

model.fit(scale_train, trainY)

test_preds = model.predict(scale_test)

array([0.84684685, 0.87387387, 0.86363636, 0.88181818, 0.85454545,
       0.89090909, 0.89090909, 0.85454545, 0.90909091, 0.88181818,
       0.86486486, 0.87387387, 0.88181818, 0.88181818, 0.85454545,
       0.81818182, 0.89090909, 0.88181818, 0.86363636, 0.9       ,
       0.91891892, 0.87387387, 0.89090909, 0.85454545, 0.82727273,
       0.88181818, 0.84545455, 0.88181818, 0.89090909, 0.87272727])



Mean Accuracy: 0.873 (0.022)





LinearDiscriminantAnalysis(n_components=None, priors=None, shrinkage=None,
                           solver='svd', store_covariance=False, tol=0.0001)

Quick evaluation on test set

model = sda.LinearDiscriminantAnalysis()
model.fit(scale_train, trainY)

test_preds = model.predict(scale_test)
sm.confusion_matrix(test_preds, testY)
print(f'Test Accuracy: {round(sm.accuracy_score(test_preds, testY),3)*100}%')
LinearDiscriminantAnalysis(n_components=None, priors=None, shrinkage=None,
                           solver='svd', store_covariance=False, tol=0.0001)






array([[310,  30],
       [  8,  20]])



Test Accuracy: 89.7%

Extract Feature Importances

lda_features = pd.DataFrame(data={'Feature': trainX.columns, 'Contribution':model.coef_[0], 'abs_cont': np.abs(model.coef_[0])})\
    .sort_values('abs_cont', ascending = False)[['Feature', 'Contribution']]

The test accuracy is actually even higher than the cross validated training accuracy

Visualize in one dimension

The accuracy is pretty high even reducing everything down to just one dimension which is pretty impressive. I show with some jitter below.

fitted_model = model.fit(scale_train, trainY)

one_d_train = fitted_model.transform(scale_train)
one_d_train = pd.DataFrame(one_d_train, columns = ['X'])
one_d_train['Label'] = trainY.values

jitter = np.random.random(one_d_train.shape[0])

fig, axs = plt.subplots(ncols=2)

fig.set_size_inches(15, 6)
# df['korisnika'].plot(ax=axs[0])
# df['osiguranika'].plot(ax=axs[1])

sns.scatterplot(data=one_d_train, x = 'X', y=jitter,  hue="Label", hue_order = ['No', 'Yes'], ax = axs[0])

one_d_test = fitted_model.transform(scale_test)
one_d_test = pd.DataFrame(one_d_test, columns = ['X'])
one_d_test['Label'] = testY.values

jitter = np.random.random(one_d_test.shape[0])

sns.scatterplot(data=one_d_test, x = 'X', y=jitter,  hue="Label", hue_order = ['No', 'Yes'], ax = axs[1])

<matplotlib.axes._subplots.AxesSubplot at 0x7ffca2b77490>






<matplotlib.axes._subplots.AxesSubplot at 0x7ffca58f45d0>

png

But how does this compare to XGBoost?

from xgboost import XGBClassifier
from xgboost import plot_importance

model = XGBClassifier()
model.fit(trainX, trainY)

train_xgb_preds = model.predict(trainX)
test_xgb_preds = model.predict(testX)

sm.confusion_matrix(train_xgb_preds, trainY)
print(f'Test Accuracy: {round(sm.accuracy_score(train_xgb_preds, trainY),3)*100}%')

sm.confusion_matrix(test_xgb_preds, testY)
print(f'Test Accuracy: {round(sm.accuracy_score(test_xgb_preds, testY),3)*100}%')
XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
              colsample_bynode=1, colsample_bytree=1, gamma=0, gpu_id=-1,
              importance_type='gain', interaction_constraints='',
              learning_rate=0.300000012, max_delta_step=0, max_depth=6,
              min_child_weight=1, missing=nan, monotone_constraints='()',
              n_estimators=100, n_jobs=4, num_parallel_tree=1,
              objective='binary:logistic', random_state=0, reg_alpha=0,
              reg_lambda=1, scale_pos_weight=1, subsample=1,
              tree_method='exact', use_label_encoder=True,
              validate_parameters=1, verbosity=None)






array([[915,   0],
       [  0, 187]])



Test Accuracy: 100.0%





array([[311,  35],
       [  7,  15]])



Test Accuracy: 88.6%

Untrained, XGBoost classifies the training data perfectly but is actually outperformed by LDA on the test data. I suspect a simple grid search would amerliorate this. First, however I want to compare the feature imporance in the two jobs.

ax = plot_importance(model)
fig = ax.figure
fig.set_size_inches(10, 10)

png

lda_features

Feature Contribution
50 OverTime_Yes 0.507787
49 OverTime_No -0.507787
4 EnvironmentSatisfaction -0.491681
45 JobRole_Sales Representative 0.489383
11 NumCompaniesWorked 0.487821
8 JobSatisfaction -0.445302
6 JobInvolvement -0.417925
21 YearsSinceLastPromotion 0.389570
16 TotalWorkingYears -0.380487
22 YearsWithCurrManager -0.299832
48 MaritalStatus_Single 0.295092
18 WorkLifeBalance -0.284870
2 DistanceFromHome 0.262430
0 Age -0.254437
14 RelationshipSatisfaction -0.252732
20 YearsInCurrentRole -0.251739
41 JobRole_Manufacturing Director -0.241343
24 BusinessTravel_Travel_Frequently 0.238570
23 BusinessTravel_Non-Travel -0.219165
37 JobRole_Healthcare Representative -0.215543
15 StockOptionLevel -0.199956
43 JobRole_Research Scientist -0.195798
19 YearsAtCompany 0.193145
17 TrainingTimesLastYear -0.191518
39 JobRole_Laboratory Technician 0.184980
42 JobRole_Research Director -0.179125
38 JobRole_Human Resources 0.176008
47 MaritalStatus_Married -0.157675
29 EducationField_Human Resources 0.153075
27 Department_Research & Development 0.144829
34 EducationField_Technical Degree 0.144608
26 Department_Human Resources -0.139333
46 MaritalStatus_Divorced -0.137834
9 MonthlyIncome 0.136029
7 JobLevel -0.122578
36 Gender_Male 0.105500
35 Gender_Female -0.105500
44 JobRole_Sales Executive 0.094384
1 DailyRate -0.091678
33 EducationField_Other -0.090564
28 Department_Sales -0.089418
12 PercentSalaryHike -0.086685
32 EducationField_Medical -0.086016
13 PerformanceRating 0.065262
25 BusinessTravel_Travel_Rarely -0.056734
5 HourlyRate -0.051925
31 EducationField_Marketing 0.049313
30 EducationField_Life Sciences -0.031653
40 JobRole_Manager -0.028730
3 Education -0.025777
10 MonthlyRate 0.009458

Interestingly LDA shows the monthly and hourly rates having some of the lowest feature importance while XGBoost has them among the highest.

Marshall Krassenstein
Marshall Krassenstein
Data Scientist

Data Scientist at DataRobot. Likes running, climbing and smoothies

Related